Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment.
نویسندگان
چکیده
Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We recently showed that membrane shape/curvature can in itself mediate the recruitment of lipidated proteins. However, exactly how membrane curvature and composition synergize remains largely unexplored. Here we investigated how three critical structural parameters of lipids, namely acyl chain saturation, headgroup size, and acyl chain length, modulate the capacity of membrane curvature to recruit lipidated proteins. As a model system we used the lipidated minimal membrane anchor of the GTPase, N-Ras (tN-Ras). Our data revealed complex synergistic effects, whereby tN-Ras binding was higher on planar DOPC than POPC membranes, but inversely higher on curved POPC than DOPC membranes. This variation in the binding to both planar and curved membranes leads to a net increase in the recruitment by membrane curvature of tN-Ras when reducing the acyl chain saturation state. Additionally, we found increased recruitment by membrane curvature of tN-Ras when substituting PC for PE, and when decreasing acyl chain length from 14 to 12 carbons (DMPC versus DLPC). However, these variations in recruitment ability had different origins, with the headgroup size primarily influencing tN-Ras binding to planar membranes whereas the change in acyl chain length primarily affected binding to curved membranes. Molecular field theory calculations recapitulated these findings and revealed lateral pressure as an underlying biophysical mechanism dictating how curvature and composition synergize to modulate recruitment of lipidated proteins. Our findings suggest that the different compositions of cellular compartments could modulate the potency of membrane curvature to recruit lipidated proteins and thereby synergistically regulate the trafficking and sorting of lipidated proteins.
منابع مشابه
Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane.
The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras a...
متن کاملLipid-Sorting Specificity Encoded in K-Ras Membrane Anchor Regulates Signal Output
K-Ras is targeted to the plasma membrane by a C-terminal membrane anchor that comprises a farnesyl-cysteine-methyl-ester and a polybasic domain. We used quantitative spatial imaging and atomistic molecular dynamics simulations to examine molecular details of K-Ras plasma membrane binding. We found that the K-Ras anchor binds selected plasma membrane anionic lipids with defined head groups and l...
متن کاملElectrostatic interactions positively regulate K-Ras nanocluster formation and function.
The organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale environments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane b...
متن کاملInteraction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity.
Ternary lipid mixtures composed of cholesterol, saturated (frequently with sphingosine backbone), and unsaturated phospholipids show stable phase separation and are often used as model systems of lipid rafts. Yet, their ability to reproduce raft properties and function is still debated. We investigated the properties and functional aspects of three lipid raft model systems of varying degrees of...
متن کاملRecursive Alterations of the Relationship between Simple Membrane Geometry and Insertion of Amphiphilic Motifs
The shape and composition of a membrane directly regulate the localization, activity, and signaling properties of membrane associated proteins. Proteins that both sense and generate membrane curvature, e.g., through amphiphilic insertion motifs, potentially engage in recursive binding dynamics, where the recruitment of the protein itself changes the properties of the membrane substrate. Simple ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 113 6 شماره
صفحات -
تاریخ انتشار 2017